LiDAR360 机载林业教程

目录	
教程介绍	2
软件安装	2
数程所需数据	2
第一章: 点云预处理	
去噪	3
地面点分类	3
生成 DEM	4
归一化	6
第二章:群体参数提取	
高度变量	
强度变量	
覆盖度	
叶面积指数	
间隙率	
第三章: 单木分割	
CHM 分割	
点云分割	20
基于种子点的单木分割	22
更多资源	

教程介绍

森林资源调查的重要内容之一是测量样方内单木的**树种、树高、胸径及所在位** 置等。激光雷达技术能够同时获取森林冠层表面的**水平**和**垂直结构**信息,基于 高密度的激光雷达点云不仅能够获取**林分尺度**森林参数,也可以提取**单木尺度** 的森林参数。

本教程介绍通过 LiDAR360 机载林业模块处理机载点云数据,分别获取群体尺度的高度变量、覆盖度、叶面积指数等参数和单木尺度的树木位置、株数、树高、树冠直径、树冠面积、树冠体积等参数。以及结合样地调查数据,通过回归分析反演生物量、蓄积量等。

请参考该教程安装 LiDAR360 软件、下载样例数据并使用样例数据完成练习。 建议您完成整个教程来熟悉机载点云的处理流程,然后在您的工程项目中使 用。但是我们为每个练习提供了样例数据,您也可以从任何一个练习开始。

软件安装

从北京数字绿土科技有限公司<u>官方网站</u>下载最新版 LiDAR360 软件,软件安装 和激活请参考用户手册。

教程所需数据

ALSSampleData.zip 包含本教程需要的所有数据,请下载并解压该文件。

第一章: 点云预处理

提取林业参数之前,需要对点云数据进行去噪、地面点分类、归一化等预处 理。归一化是林业参数提取的基础,可去除地形起伏对点云数据高程值的影 响。

去噪

- 1 加载点云数据
 - 1.1 运行 LiDAR360 软件 🛸
 - 1.2 单击 **文件 > 数据 > 添加数据**,选择下载的 ALSData.LiData,点击 **打开**,点云数据将自动加载到**图层管理**窗口的点云图层。

LiDAR360 支持的点云数据格式包括 LiData、LAS(.las, .laz)、ASCII (.txt,.asc,.neu,.xyz,.pts,.csv) 和 PLY(.ply)。其中, LiData 为软件自定义点云格式, LAS/ASCII/PLY 等格式的点云导入软件之后 将自动生成对应的 LiData。

2 去噪

点击 数据管理 > 点云工具 > 去噪,使用默认参数,点击确定。

** - ● 去噪	×	•
☑ 选择	文件	
	ALSData.LiData	
邻域点个数: 10	标准差倍数: 5	
输出路径: C:/1_J	LSData/ALSData_去噪. LiData	
默认值	确定即消	

地面点分类

点击 分类 > 地面点分类,使用默认参数设置,点击确定。

· 送择 文件 · 必由点 ALSData_去嗓.LiData · 初始类別 目标类: · 创建点,未分类 · 未分类 · 砂油点 · 低級植 锁点 · 申等植 锁点 · 高植 诚点 · 建筑物点 · 低点 · 模型关键点 · 水体 · Reserved10 保留类别 · 全选 · 取消选择 · 生成关键点 · 上边界阈值 · 上边界阈值 · 1.5 · 批值 · 1.5	
Image: AlsData_去噪LiData 初始类別 ○ 创建点,未分类 『 未分类点 ○ 创建点,未分类 『 未分类点 ○ 小母等植被点 ○ 中等植被点 ○ 車装 ○ 中等植被点 ○ 電気物点 ○ 推動点 ○ 推動点 ○ 市等植被点 ○ 全法 ○ 取消法择 ○ 全法 ○ 取消法择 ○ 上边界阈值 ○ 15 米 ○ 15 ※ ○ 15 ● 默认值	
初始类别 目标类: 2-地面点 ① 创建点,未分类 ▼ 未分类点 参数 □ 地面点 低矮植被点 □ 中等植被点 高植被点 □ 建筑物点 低点 □ 模型关键点 水体 □ Reserved10 保留类别 ○ 全选 取消选择 □ P生成关键点 上边界阈值 □ L边界阈值 1.5 米 上边界阈值 □ 加丁 米 函加 1.5 ○ 全达 1.5 ○ 全达 取消选择 □ 原生成关键点 1.5 □ 加丁 米 □ 加丁 ※ □ 加丁 ※	ء د د
○ 创建点,未分类 ▼未分类点 参数 □ 地面点 □ 低矮植被点 □ 中等植被点 □ 高植被点 □ 建筑物点 □ 低点 □ 模型关键点 小休 □ 模型关键点 小休 □ 像呈大建筑物尺寸: 20 ● 接型关键点 小休 □ 橡型关键点 小休 □ 像全选 ● 取消选择 ● 全选 ● 取消选择 ● 上边界阈值 0.15 ● 比构建三角形,当边长 20 ● 上边界阈值 0.15 ● 默认值 ● .15	• •
地面点 価級植被点 中等植被点 高植被点 違茲物点 低点 模型关键点 水体 Reserved10 保留类别 全选 取消选择 只生成关键点 上边界阈值 0.15 张认值 0.15 默认值 0.15	، د
□ 中等值预点 高值预点 迭代角度: 8 • 迭代距离: 1.4 □ 建筑物点 □ 低点 □ 承小迭代角,当边长 5 米 □ Reserved10 (保留类别) □ 停止构建三角形,当边长 2 米 □ 全选 □ 取消选择 □ 只生成关键点 上边界阈值 0.15 米 格网大小: 20 ■ 默认值 □ 默认值 □ 15 ● 株 □ 保留类别 □ 原生成关键点 □ 原生成关键点	6
● 模型关键点 小体 「減小迭代角,当边长 5 米 ● Reserved10 保留类别 ● 停止构建三角形,当边长 2 米 ● 全选 ● 取消选择 ● 只生成关键点 上边界阈值 0.15 米 格网大小: 20 ● 默认值 ● 15 米 ● 小肉建 ● 小肉建 ● 小肉建 ● 小肉建 ● 全选 ● 取消选择 ● 小肉建 ● 小肉建 ● 小肉建 ● 小肉建 ● 小肉建 ● 全选 ● 取消选择 ● 取消选择 ● 小肉建 ● 小肉建 ● 小肉建 ● 小肉建 ● 全选 ● 取消选择 ● 日本 ● 小肉建 ● 小肉建 ● 小肉 ● 小肉 ● 全选 ● 取消选择 ● 小肉 ● 小肉 ● 小肉 ● 小肉 ● 小肉 ● 公式 ● 取消选择 ● 小肉 ● 小肉 ● 小肉 ● 小肉 ● 小肉 ● 小肉 ● 公式 ● 取消 ● 小肉	
■ Reserved10 保留类别 ● 全选 ● 取消选择 ■ 日生成关键点 上边界阈值 0.15 米 ● 日本の建三角形,当边长 2 米 ● 全选 ● 取消选择 ● 取消选择 ● 日本の建三角形,当边长 ● 日本の建三角形,当边长 2 ● 上効界阈值 0.15 ● 大山の建築 ● 日本の建三角形,当边长 ● 日本の建三角形,当边长 2 ● 日本の建三角形,当边长 2 ● 日本の建築 ● 日本の建築 ● 日本の建築 ● 日本の美術会 ● 日本の美術会	
 ◆ 全选 ● 取消选择 ● 只生成关键点 上边界阈值 0.15 米 格网大小: 20 下边界阈值 0.15 米 米 	
上边界阈值 0.15 * 格网大小: 20 下边界阈值 0.15 * 默认值 确定	
上边界阈值 0.15 米 格网大小: 20 下边界阈值 0.15 米 默认值 确定	— .
下边界阈值 0.15 米 默认值 确定	*
下边界阈值 0.15 米 默认值 确定	
この目的には、「「「」」」、「」」、「」」、「」、「」、「」、「」、「」、「」、「」、「」、	
	取消
4 4	
With the state of	4
	é

分出来的地面点以黄色显示

生成 DEM

·未分类点

点击**地形 > 数字高程模型**,使用默认参数设置,点击确定。

在本教程中,大部分操作都可以使用默认参数设置。但是,为了得到 最佳结果,有时候用户需要进行参数调整。请参考 LiDAR360 用户手 册获取每个功能更多的信息。数字高程模型功能用户手册:<u>数字高程</u> 模型。

	×
☑ 选择	文件
	ALSData_去噪,LiData
参数设置 XSize 2 插值方法 TIM	* YSize 2 *
🔲 合并为一个	▶文件
输出路径: C:/1_A	LSData/ALSData_去噪_数字高程模型.tif
默认值	确定即消

A

加载 DEM 到软件中之后,当前窗口将切换为 2D 模式,如果需要切换为 3D 模式,可以新建一个窗口或者在当前窗口中移除 DEM。

点击**数据管理 > 格式转换 > TIFF 转换为**LiMode1,可以将 DEM 转换 成三维格式。

DEM (左) 和 LiModel (右)

归一化

点击**数据管理 > 点云工具 > 归一化**,如果 DEM 数据已经在软件中打开,可以从**输入 DEM 文件**的下拉列表选择 DEM,如果 DEM 数据没有在软件中打

开,可以点击 🗗 添加。

原始点云 (左)和归一化的点云 (右)

第二章: 群体参数提取

本章介绍基于 LiDAR360 软件提取群体森林参数,具体包括:高度变量、强度 变量、覆盖度、叶面积指数和间隙率。本章的输入数据为归一化之后的点云数 据,可以使用第一章练习生成的成果作为本练习的输入数据,或使用下载的教 程数据 ALSData_去噪_归一化.LiData。

高度变量

高度变量是与点云高程值相关的统计参数,对回归分析特别有用,可作为回归 分析的自变量。从激光雷达点云数据可以计算 46 个与高度相关的统计变量以及 10 个点云密度相关的统计变量。关于各个变量的计算方法可参考 LiDAR360 用 户手册:<u>高度变量</u>。

1 点击**机载林业 > 森林参数 > 高度变量**,选择输出格式为 CSV 文件,其他参数采用默认设置,点击确定。

高度变量和强度变量都可以生成 CSV 和 TIFF 两种格式的结果,如果

选择生成 TIFF 文件,则每个变量都会生成一个 TIFF 文件。

"。					×
☑ 选择		文件			
		ALSData_去噪_归一	-化.LiData		
(注意: 诸确保所籍	入点云数据必须归一化:)				
XSize 15	₩ YSize	15 米	高度阈值	2	*
◎ TIFF文件		◙ csv文件			
输出路径: C:/1_A	LSData/ALSData_去噪_归一作	ℓ_高度变量.csv			
默认值				确定	取消

2 运行完成后,可以将 csv 添加到软件中,或者直接用 excel 打开。

加载 CSV 文件到 LiDAR360 软件中会有两种选择:

- 打开为表格:文件将被加载到表格图层,在图层上单击鼠标右键可打 开表格的属性表查看各个属性字段。此外,打开为表格时可设置数据 类型为点或者圆,同时需设置(X,Y,Z)坐标对应的字段。
- 打开为点云: 文件将被加载到点云图层, CSV 文件中的 X, Y, Z 字段 可用于定义点的坐标位置, 同时也可以设置点的强度、类别、回波次 数、RGB 和 GPS 时间等属性。

由于本教程加载 CSV 的目的是查看属性表,所以选择打开为表格。

"。	×
C:/1_ALSData/ALSData_	去噪_归—化_高度变量.csv
打开为	
◎ 打开为表格	◎ 打开为点云
数据类型 <u>「」</u> ▼ X x ▼	Y y 🔻 Z XSize 💌
■ 显示标签 🛛 🛛	▼

	C:/1_ALSData/ALSI	lata_去噪_归—化_蔦	。度变量.csv						x
	x	У	XSize	YSize	elev_aad_z	_canopy_relief_r	elev_AIH_1st	elev_AIH_5th	elev_AIH_10th
1	322507.500	4102007.500	15.000	15.000	8.851	0.479	5.400	19.070	22.812
2	322507.500	4102022.500	15.000	15.000	9.393	0.456	7.739	15.669	18.332
3	322507.500	4102037.500	15.000	15.000	7.737	0.528	8.562	13.629	18.338
4	322507.500	4102052.500	15.000	15.000	5.339	0.417	4.030	6.969	9.330
5	322507.500	4102067.500	15.000	15.000	7.141	0.419	2.977	5.483	9.549
6	322507.500	4102082.500	15.000	15.000	13.516	0.203	2.469	3.341	4.318
7	322507.500	4102097.500	15.000	15.000	11.722	0.366	4.603	8.731	14.485
8	322507.500	4102112.500	15.000	15.000	14.854	0.366	3.806	6.454	8.792
9	322507.500	4102127.500	15.000	15.000	5.164	0.410	5.025	9.473	11.606
10	322507.500	4102142.500	15.000	15.000	7.790	0.502	6.683	11.777	15.578
11	322507.500	4102157.500	15.000	15.000	10.764	0.521	4.862	9.814	14.659
12	322507.500	4102172.500	15.000	15.000	6.578	0.532	9.192	12.546	13.918
•	III	i		1	i	1		1	•

高度变量的属性表

强度变量

强度变量与高度变量类似,不同的是计算强度变量使用的是点的强度值而非高度值。因此,只有当点云数据中包含强度信息时,才能使用该功能。从激光雷达点云数据,共可以计算 42 个与强度相关的统计变量。

1 点击**机载林业 > 森林参数 > 强度变量**,选择输出格式为 CSV 文件,其他参数采用默认设置,点击确定。

- 金强度变量							×	
☑ 选择			文件	:				
V		ALSDa	ita_去噪_则	日—— 化.LiData	I			
(注意:诸确保所	「輸入点云数据必须归一化!)							
XSize	15	*	YSize	15		*		
◎ TIFF文件		(◙ csv文件	ŧ				
输出路径: C:/1	_ALSData/ALSData_去噪_归—	化_强度	变里.csv					
默认值					确定	取消		
	2.4							

只有当点云数据中包含强度信息时,才能提取强度变量。可以点击工	
具栏的按强度显示按钮 或者在点云数据单击鼠标右键,选择 信	
息 ,查看点云是否有强度信息。	9

	" ④C:/1_ALSDete/ALSDete_去嗓_归一化. LiDete		×
	Lilata 版本: 1.9	坐标系:	
	最小证: 322500.000	最大X: 322999.99D	
	最小T: 4102DOO.00D	最大Y: 4102499.990	
	最小II: 0.000	最大Z: 60.583	
工程	野 平均元: 10.534	2标准差: 13.003	
a b	最小GPS时间: 526494.500	最大GPS时间: 528238.625	
4 🗑 🚔 图层	最小强度: L.COO	最大强度: 2564.000	
▲ 🗷 🔆 点云(1)	平均强度: 46.612	强度标准差: 24.848	
図 価格 信息 図 器 失量 思示	包围盒(X,T,Z)(493.990,499.990,60.583) 类别统计 回波次数统计	总点数: 3538103	
▲ 図 📴 表格 // // // // // // // // // // // // //	美名称	値 点数	
 ✓ ALSData_去噢归一化 ✓ ✓ ALSData 去嗪 归一化 	1 未分类点	1 3223251	
☑ ∲ 模型 导出 PCV	2 地面点	2 374852	
点大小 移除		「書田」	关闭

2 运行完成后,可以将 csv 添加到软件中,或者直接用 excel 打开。

"一 🚭 打开数据	×
C:/1_ALSData/ALSData_去噪_归-	─化_强度变量.csv
打开为	
◎ 打开为表格	◎ 打开为点云
数据类型 点 ▼ X x ▼ Y y	▼ Z XSize ▼
	应用 全部应用 取消

, in the second se	C:/1_ALSData/ALS	Data_去噪_归一化_强	腹变里.csv						
	x	У	XSize	YSize	int_aad	int_cv	int_AII_1st	int_AII_5th	int_AII_10th
1	322507.500	4102007.500	15.000	15.000	17.535	0.679	4.000	13.000	19.000
2	322507.500	4102022.500	15.000	15.000	18.451	0.756	4.000	11.000	17.000
3	322507.500	4102037.500	15.000	15.000	18.490	0.728	4.000	12.000	18.000
4	322507.500	4102052.500	15.000	15.000	17.739	0.711	5.000	13.000	18.000
5	322507.500	4102067.500	15.000	15.000	20.012	0.622	6.000	16.000	24.000
6	322507.500	4102082.500	15.000	15.000	17.644	0.498	8.000	22.000	31.000
7	322507.500	4102097.500	15.000	15.000	18.086	0.654	5.000	14.000	20.000
8	322507.500	4102112.500	15.000	15.000	20.338	0.557	8.000	21.000	29.000
9	322507.500	4102127.500	15.000	15.000	20.997	0.696	6.000	15.000	23.000
10	322507.500	4102142.500	15.000	15.000	24.031	0.600	8.000	21.000	32.000
11	322507.500	4102157.500	15.000	15.000	24.289	0.577	8.000	22.000	34.000
12	322507.500	4102172.500	15.000	15.000	18.600	0.665	5.000	14.000	20.000
•									•

强度变量的属性表

覆盖度

点击**机载林业 > 森林参数 > 覆盖度**,采用默认参数设置,点击确定。

F	@ .覆き	皀度								×
	√ j	选择					文件			
		V				ALSData_	₩	-化.LiData		
	(注意:	谱确保系	新输入点言	数据必须归	(= <u>\$</u> {!})					
		VSine	15		VSizo	15	<u>ж</u>	古度词仿	2	*
		VOITE	13	-	ISITE	15	ጥ	日間に変換し	2	*
1	输出路径	≩: C:/1	(_ALSData	/ALSData_ 2	与噪_归——(Ł_覆盖度. t:	if			
	默认	值							确定	取消

A

归一化的点云(左)和覆盖度(右)

叶面积指数

点击机载林业 > 森林参数 > 叶面积指数,采用默认参数设置,点击确定。

- 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一					x
✓ 选择			文件		
		ALSData	_去噪_归一化.	LiData	
(注意:诸确保所新	象 入点云数据必须归一化!	0			
XSize	15	*	YSize	15	*
高度阈值	2	* 머	倾角分布	0.5	
输出路径: C:/1_	ALSData/ALSData_去噪_リ	3——化_叶面积打	指数.tif		
默认值				确定	取消

归一化的点云(左)和叶面积指数(右)

间隙率

点击机载林业 > 森林参数 > 间隙率,采用默认参数设置,点击确定。

"。		×
☑ 选择	文件	
	ALSData_去噪_归一化.LiData	
(注意:诸确保所物	<u>《入点云教据必须归一化!</u>)	
XSize 1	5 米 YSize 15 米 高度阈值 2 米	
输出路径: C:/1_	ALSData/ALSData_去噪_归—化_间隙率.tif	
默认值	确定则如消	

归一化的点云(左)和间隙率(右)

第三章: 单木分割

使用第一章练习生成的成果作为本练习的输入数据,或使用下载的教程数据 ALSData_去噪_归一化.LiData。

LiDAR360 中的单木分割方法可分为基于 CHM 的分割和基于点云的分割,基于 点云分割又包括直接基于点云分割和基于种子点的分割,生成种子点的方法包 括基于 CHM 生成种子点和基于层堆叠生成种子点。

CHM 分割

1

将归一化之前的点云数据加载到软件中,点击**地形 > 数字高程模型**,分辨 率设置为 0.6 米,其他参数采用默认设置,点击确定。

"。 🕘 数字高程模型	×
☑ 选择	文件
	ALSData_去噪.LiData
参数设置	
XSize 0.6	* YSize 0.6 *
插值方法 TIN	▼ 权重 2
🔲 合并为一个	▶文件
输出路径: C:/1_A	LSData/ALSData_去噪_数字高程模型.tif
默认值	确定则调

原始点云数据(左)和DEM(右)

2 点击**地形 > 数字表面模型**,分辨率设置为 0.6 米,插值方式选择 IDW,其他参数采用默认设置,点击确定。

F	.	汝字表面模型					x
Г	_						
	\checkmark	选择		2	之件		
		\checkmark		ALSData_	去噪 LiData		
		· · · · · · · · · · · · · · · · · · ·					
	一起	始类别		参数设置			
		〕创建点,未分	计类 📝 未分类点	XSize 0.6	* YSi	ize 0.6	*
	V	地面点	🗌 低矮植被点				
]中等植被点	🗌 高植被点	插值方法 IDW	₹	2重 2	
		建筑物点	🗌 低点				
] 模型关键点	🗌 水体	搜索半径 可变半径			-
		Reserved10	保留类别				
	0	全诜	◎ 取消洗择	距离 5	像素 点数 1	12	
		Ξœ					
	Retu	ırn Number 1	.2.3.4 🗸 🔀	🔲 合并为一个文件	▼ ネト	同	
\$	渝出路	备径: C:/1_AL					
ſ	483					72	TT : 14
l	默	1411月				「明正」	
							34

原始点云数据(左)和DSM(右)

如果要采用 spike-free TIN 算法生成 DSM, 先选择插值方法为 TIN,
然后选择 spike-free TIN。Spike-free TIN 可用于生成 pit-free CHM,在
一些特定场景, pit-free CHM 可提高 CHM 分割的精度。

3 点击**地形 > 冠层高度模型**,分别选择数字表面模型和数字高程模型,然后 点击确定。

⁶ @rdea	度模型	
输入DSM	C:/1_ALSData/ALSData_去噪_数字表面模型.tif ▼	
输入DEM	C:/1_ALSData/ALSData_去噪_数字高程模型.tif ▼	
输出CHM	C:/1_ALSData/ALSData_去噪_数字表面模型_冠层高度模型.tif	

原始点云数据(左)和CHM(右)

4 点击**机载林业 > 单木分割 > CHM 分割**,勾选 CHM 为待处理数据,其他 参数采用默认设置,点击确定。

¹⁷ - <mark></mark> CHM分割					×		
〕 选择			文件				
		ALSData	_去噪_数字表面模	型.tif			
		ALSData_去噪_数字表面模型_冠层高度模型.tif					
		ALSData	_去噪_数字高程模	型.tif			
最大树高	ξi 80	*	最小树高	2	*		
缓冲区大	切 50	像素	冠幅起算高度	0.8	*		
☑ 高斯平滑							
Sigma 1		半径	(pix) 5				
输出路径: C:/1_A	LSData/ALSData_;	去噪_数字表面模型_冠层高	度模型_CHM分割。	. csv			
默认值	-			确定	取消		

5 分割完成后软件将提示是要将分割结果加载到软件中,按照下图的参数 设置,点击应用,可以将 csv 文件加载到软件中,其中包含每棵树的位置、 树高、树冠直径和树冠面积。 6 除了 CSV 文件, CHM 分割还会生成包含树木边界的矢量文件。在工图层管理窗 口的矢量图层上单击鼠标右键,选择导入数据,选择 CHM 分割生成的 SHP 文件 并加载到软件中。

17 🚭打开数据	×
C:/1_ALSData/ALSData_	s噪_数字表面模型_冠层高度模型_CHM分割.csv
打开为	
◎ 打开为表格	◎ 打开为点云
数据类型 <u>上</u> ▼ X TreeLocationX ▼	Y TreeLocationY 🔻 Z TreeHeight 💌
🔲 显示标签 【TreeID	~
	应用 全部应用 取消

	TreeID	TreeLocationX	TreeLocationY	TreeHeight	CrownDiameter	CrownArea
1	1	322511.100	4102499.090	12.137	4.440	15.480
2	2	322520.700	4102499.090	11.605	<mark>4.3</mark> 35	14.760
3	3	322556.100	4102499.090	10.772	3.385	9.000
4	4	322574.700	4102499.090	2.598	2.031	3.240
5	5	322578.900	4102499.090	9.810	3.948	12.240
6	6	322734.300	4102499.090	17.786	4.592	16.560
7	7	322743.300	4102499.090	11,491	4.062	12.960
8	8	322765.500	4102499.090	4.095	2.441	4,680
9	9	322767.300	4102499.090	3.361	1.791	2.520
10	10	322813.500	4102499.090	24.152	3.582	10.080
11	11	322815.900	4102499.090	15.218	2.345	4.320
12	12	322827.900	4102499.090	27.981	6.131	29.520
13	13	322839.300	4102499.090	28.396	6.018	28,440
14	14	322893.300	4102499.090	31.103	5.624	24.840
15	15	322928.700	4102499,090	32.703	6.871	37.080
16	16	322875.300	4102498.490	34.868	8.124	51.840
17	17	322972.500	4102498.490	36.500	9.283	67.680

树的位置和边界与CHM 叠加显示(左)和单木分割属性表(右)

点云分割

 点击机载林业 > 单木分割 > 点云分割, 输入数据为归一化的点云数据, 采用默认参数设置, 点击确定。

选择		文	件	
		ALSData_去噪	_归—化.LiData	
1: 诸确保所输入 点	云数据必须归一化。	0		
刀始类别		参数		
〕创建点,未分类	📝 未分类点	距离阈值	2	*
地面点	🗌 低矮植被点	离地面高度	2	*
中等植被点	🗌 高植被点			
建筑物点	🗌 低点			
│模型关键点	🗌 水体			
Reserved10	保留类别	📝 优化单木	分割结果的显示配色	
)全选	◎ 取消选择			
路径: C:/1 ALSDa	ta/ALSData 去喔刂	3——化 点云分割	l. csv	

分割完成后点云显示模式将变成按树 ID 显示,若没有,可点击菜单栏的 2 切换为按树 ID 显示。此外,单木分割后将生成一个 csv 文件,其中包

含树 ID、x、y 坐标、树高、树冠直径、树冠面积和树冠体积。

"。	×
C:/1_ALSData/ALSData_	呿噪_归──化_点云分割.csv
- 打开为	
◎ 打开为表格	◎ 打开为点云
数据类型 点 ▼ X TreeLocationX ▼ □ 显示标签 TreeID	Y TreeLocationY V Z TreeHeight V
	应用 全部应用 取消
A A A	

点云按树 ID 显示

	TreeID	TreeLocationX	TreeLocationY	TreeHeight	CrownDiameter	CrownArea	CrownVolume
1	1	322533.990	4102053.190	50.998	8.334	54.544	1360.274
2	2	322522.530	4102143.800	52.384	8.763	60.307	1777.765
3	3	322520.650	4102152.530	52.135	9.307	68.030	1881.518
4	4	322529.420	4102073.100	53.815	13.356	140.091	4865.282
5	5	322523.190	4102069.780	50.515	3.267	8.384	204.563
ō	6	322511.520	4102089.780	60.583	10.825	92.037	3242.517
7	7	322511.810	4102015.140	57.152	9.981	78.249	2659.009
8	8	322514.280	4102001.290	51.504	11.674	107.029	3322.394
9	9	322524.390	4102137.490	48.550	7.453	43.625	1300.132
LO	10	322525.070	4102101.070	53.669	12.552	123.747	3119.212
1	11	200555 710	4102001-650	40.424	7 972	19 697	1520.005

基于种子点的单木分割

基于 CHM 或者层堆叠算法获取单棵树的位置信息,以这些信息作为种子点, 对点云进行单木分割。

- 1 CHM 生成种子点
 - 1.1 将 CHM 数据加载到软件中,点击机载林业 > 单木分割 > CHM 生成
 种子点,采用默认参数设置,点击确定。

^{III} 圖CHM生成种子点	ī			×
✓ 选择		文件		
	ALSD	ata_去噪_数字表面模型_	冠层高度模型.tif	
最大树高	80	米 最小树高	2	*
缓冲区大小	50	像素		
📝 高斯平滑				
Sigma 1		半径(pix) 5		
输出路径: C:/1 A	ISData/ALSData 去喔 拗乌	2.表面模型 冠层高度模型	リCHM生成种子占.csy	
默认值				
默认值		93,-*	确定	取消

1.2 运行完成后将生成逗号分隔的 CSV 格式的种子点文件,其中包含描述数据信息的表头,以及树 ID、树的 X、Y、Z 坐标四列。

^{;;;}	¹² ————————————————————————————————————							
	TreeID	TreeLocationX	TreeLocationY	TreeLocationZ	*			
1	1	322511.100	4102499.090	12.137				
2	2	322520.700	4102499.090	11.605				
3	3	322556.100	4102499.090	10.772				
4	4	322574.700	4102499.090	2.598				
5	5	322578.900	4102499.090	9.810				
6	6	322734.300	4102499.090	17.786				
7	7	322743.300	4102499.090	11.491				
8	8	322765.500	4102499.090	4.095				
9	9	322767.300	4102499.090	3.361	-			

CHM 生成种子点的功能界面和参数设置与 CHM 分割完全相同, 二者的区别 在于: CHM 分割之后将生成包括树 ID、树的 X、Y 坐标、树高、冠幅直径和 冠幅面积的 csv 文件和包含树木边界与属性信息的 shp 文件, 而 CHM 生成 种子点只生成逗号分隔的 csv 格式的种子点文件, 而不生成 shp 文件。

2 层堆叠生成种子点

2.1 将归一化的点云数据加载到软件中,点击机载林业 > 单木分割 > 层 堆叠生成种子点,采用默认参数设置,点击确定。

″ ━━ 医堆叠当	上成种子点	ā				×	
☑ 选择				文件			
		ALSData_去噪_归一化.LiData					
(注意: 清确	保所输入。	点云数据必须归一化!)					
选择类别 :	1,2,		•	>>>			
XSiz	e	1	*	YSize	1	*	
离地	面点高度	2	*	层厚度	1	*	
最小	树间距	1	*	缓冲区大小	50	像素	
☑ 高斯平洋	音						
Sigma 1			半径	(pix) 5			
输出路径: (C:/1_ALSI	Data/ALSData_去噪_归—亻	Ł_层堆叠生	成种子点.csv	•		
默认值					确定	記録の目的である。	

2.2 运行完成后将生成逗号分隔的 CSV 格式的种子点文件,其中包含描述数据信息的表头,以及树 ID、树的 X、Y、Z 坐标四列。

²⁷ 曇C:/1_ALSData/ALSData_去噪_归一化_层堆叠生成种子点.csv						
	TreeID	TreeLocationX	TreeLocationY	TreeLocationZ	-	
1	1	322510.500	4102498.490	60.583		
2	2	322520.500	4102498.490	60.583		
3	3	322555.500	4102498.490	60.583		
4	4	322573.500	4102498.490	60.583		
5	5	322577.500	4102498.490	60.583		
6	6	322733.500	4102498.490	60.583		
7	7	322742.500	4102498.490	60.583		
8	8	322764.500	4102498.490	60.583	Ŧ	

层堆叠生成种子点得到的结果中, Tree Location Z 的值相同, 为点云的最大 Z 值, 基于种子点单木分割后可获得树高。

- 3 基于种子点的单木分割
 - 3.1 点击机载林业 > 单木分割 > 基于种子点的单木分割,点击点云文件下方的 按钮,选择输入点云为归一化的点云数据,点击种子文件下方的 按钮,选择种子点文件,种子点文件的生成方法参考 CHM 生成种子点和层堆叠生成种子点。采用默认参数设置,点击确定。

	基于种子点的单木分割		×
	点云文件	种子点文件	
1	C:/1_ALSData/ALSData_去噪_归—化.LiData	ALSData/ALSData_去噪_归一化_层堆叠生成种子点。	÷
2			
3			
4			1
Ŀ.	:: 诸确保所输入点云数据必须归一化!		
选择	类别: 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18	, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 👻 💦	>]
离地	面高度 2	*	
🔽 (尤化单木分割结果的显示配色		
输出	路径: C:/1_ALSData/		
E	默认值	确定则	肖

3.2 分割完成后,将点云数据加载到软件中,点击菜单栏的 切换为按 树 ID 显示。此外,单木分割后将生成一个 csv 文件,其中包含树 ID、x、y 坐标、树高、DBH、树冠直径、树冠面积和树冠体积属性。

点云按树 ID 显示

^{;;;}	² → C:/1_ALSData/ALSData_去噪」归一化_基于种子点的单本分割. csv							
	TreeID	TreeLocationX	TreeLocationY	TreeHeight	CrownDiameter	CrownArea	CrownVolume	^
1	1	322874.020	4102498.680	36.148	6.431	32.486	615.670	
2	2	322733.620	4102499.970	20.351	4.123	13.349	138.772	
3	3	322929.080	4102499.850	37.277	5.481	23.594	364.347	
4	4	322961.250	4102494.490	36.798	7.085	39.420	683.257	
5	5	322892.190	4102499.980	34.236	4.208	13.910	224.641	
6	6	322765.210	4102498.930	13.997	1.189	1.109	5.068	
7	7	322519.800	4102499.930	14.676	3.124	7.664	23.256	
8	8	322838.570	4102499.950	35.456	5.062	20.121	261.146	-
•							•	

4 单木分割结果检查与人工编辑

通过 ALS 编辑工具对单木分割结果进行检查,同时,可对种子点进行增加、删除等人工交互编辑,并基于编辑后的种子点再次对点云进行分割,提高单木分割的准确性。

- 4.1 点击**机载林业 > ALS 编辑**,在 ALS 编辑工具条上,点击**编辑 > 开** 始编辑,选择归一化的点云。
- 4.2 在 ALS 编辑工具条,点击 ,选择单木分割生成的 CSV 文件,在 下图所示的界面中,分别选择树 ID、X、Y、Z 和树冠直径对应的 列,并忽略最后两行,在跳过行处选择**跳过第一行**,点击应用。

Tree ID 🔻	x -	т –	z -	Crown Diameter 🔻	Ignore 🔻	Ignore 🔻
1	322874.020	4102498.680	36.148	6.431	32.486	615.670
2	322733.620	4102499.970	20.351	4.123	13.349	138.772
3	322929.080	4102499.850	37.277	5.481	23.594	364.347
4	322961.250	4102494.490	36.798	7.085	39.420	683.257
5	322892.190	4102499.980	34.236	4.208	13.910	224.641
6	322765.210	4102498.930	13.997	1.189	1.109	5.068

4.3 默认情况下会显示树 ID, 当树木较多时会遮挡住点云, 点击种子点设

置按钮 , 取消勾选显示种子点 ID。将种子点大小设置为 1。

"。		×	
颜色:	Alpha: 0.50 🚖		
🔲 显示种子点ID	种子点大小: 1.00 🚔	标签大小: 1.00 🚔	327
默认值		确定取消	Niji> K
	× 🖌 🕼 🕸 🗣 🐴 🎕	ø	_ — ×
			ř.

种子点(红色)与分割后的点云叠加显示

4.4 点击单木筛选按钮,可以根据树 ID、树高和冠幅面积对点云进行 筛选,指定属性范围内的单木将高亮显示。如下图:设置冠幅面积的 最小和最大值分别为 10 和 18.358 平方米,该范围内的点云将高亮显示。

4.5 点击 ▲ 在点云所在窗口绘制一个六边形区域,所选区域的点云将显示在剖面窗口,在该窗口中可以三维查看。如下图,红色的树木因为漏分割所以冠幅面积较大。

4.6 点击 ** 在树顶点处添加一个种子点。

- ▶ 可以在主窗口或者剖面窗口添加种子点。
- 为了保证分割结果的准确性,建议在树顶点或靠近树顶点处添加 种子点。

4.7 对于错误的种子点,可通过多边形选择工具 在主窗口中进行选择,选中的种子点将高亮显示。

4.8 点击 🗙 或者键盘上的 Delete 键可删除错误的种子点。

- 4.9 检查分割结果的过程中,可以点击 移动当前绘制的剖面,而不需 要每次重新绘制剖面。
- 4.10 检查完成后,点击 可以将编辑后的种子点保存为 csv 文件。

"。臺基于种子点的单	单木分割	×
☑ 选择	文件	
	ALSData_去噪_归一化.LiData	
(注意:诸确保所输	<i>入点云数据必须归一化!)</i>	
选择类别: 1,2,	• >>	
离地面高度 2	*	
📝 优化单木分割结	果的显示配色	
输出路径: C:/1_A	LSData/ALSData_去噪_归一化_基于种子点的单木分割.csv	
	确定取消	

更多资源

公司网站: <u>www.lidar360.com</u> 电子邮箱: info@lidar360.com 联系电话: 400-808-5501 公众号: 数字绿土

